If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+5x-84=0
a = 16; b = 5; c = -84;
Δ = b2-4ac
Δ = 52-4·16·(-84)
Δ = 5401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{5401}}{2*16}=\frac{-5-\sqrt{5401}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{5401}}{2*16}=\frac{-5+\sqrt{5401}}{32} $
| 7/2+2m=55/14 | | 4{3q-2}=16q | | 5y-8=11y+40 | | 6x-7+2x+41=122 | | 6t-4*t+6=24 | | 2/3k-1=0 | | -9+w/7=12 | | 2(4x+1=3x | | -15=−3n/5 | | 5/66y+1=−1/2y+1/4 | | 2.9+10m=6.51 | | 4x-5=x4+10 | | 120+10x=150=4 | | 78=4x+2+3x-8 | | 3(5x+9)=-37+4 | | x=(3x-60) | | 8-6m=-4m-10 | | -6=(x-2)^2 | | 4(c-16)-9=3 | | -10=s+5 | | g-2=2.9 | | 1-4v=-1v-2 | | -3=3x+6(3-x) | | 4(3x+8)=20 | | 5x/8=12 | | X=-12+2x | | -13=-7+h | | 199=8x-9 | | -12+7x=-6x | | 8(3x3)=3(9x-9) | | 3.9w=17.9=-2.3 | | 4d+2*(d-6)=18 |